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ABSTRACT

This technical note presents an improved Kalman filter excisor for dealing with narrow-

band Gaussian noise. For this type of interference, both envelope and phase vary with

time. Since the Kalrnan filter approach is close to optimum for interferers with constant

or very slowly varying envelopes, performance for the narrowband Gaussian noise case

will be significantly less than optimum. Ways and means of improving the performance

by up to 5 dB are presented. These include the use of an alternate filtering approach to

estimate the envelope to counter group delay effects, and phase-smoothing to suppress

some of the additional noise caused by temporary loss of lock by the Kalnan filter during

those instants when the envelope changes sign.

RE•SUME

Cette note techn que prdsente un algorithme bas6 sur l'utilisation d'un filtre de Kalman

pour l'excision de bruits gaussiens . bande 6troite, lesquels possdent une enveloppe et

une phase variant rapidement dans le temps. Etant donn6 que le filtre de Kalman est quai

optimal pour des signaux interfdrents ý enveloppe variant trk lentement, ]a performance

diminue considdrablement lorsque I'interference est un bruit gaussien aL bande 6troite.

Une m6thode pour amdliorer la performance de 5 dB est proposde. Cette mkthodc inclut

l'utilisation d'un autre filtre pour estimer l'enveloppe du signal dans le but de compenser

l'effet du dilai de groupe, ainsi que l'utilisation d'un filtre pour adoucir les brusques

changements de phase caus6s par les pertes de synchronisation du filtre de Kalman.

lesquels se produisent lorsque l'enveloppe du signal change de signe.
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EXECUTIVE SUMMARY

This technical note presents an improved Kalman filtering approach that is used for fil-
tering narrowband Gaussian noise interference out of direct sequence spread spectrum
signals. These signals are used extensively in military communication systems. The
technique described herein applies equally to both Electronic Support Measures (ESM)
systems and direct sequence spread spectrum commu.iiikation sytems. In the former appli-
cation, the ESM system may be attempting to intercept the spread spectrum signal, but
the narrowband interferen .m.ay he hampering this ,ffoit. In the ,-ct'er %ppiicativi,. tie

spread spectrum communication system may require additional assistance to suppress the
interference. Since the open literature has been devoted to this latter case, the material
presented here focuses on this application.

One of the attributes of direct sequence spread spectrum communication systems
is their ability to combat interference or intentional jamming by virtue of the system's

processing gain inherent in the spreading and despreading process. The interference can
be attenuated by a factor up to this processing gain. In some 'ases the gain is insufficient
to effectively suppress the interferer, leading to a significant degradation in system per-
formance as manifested by a sudden increase in bit error rate. If the ratio of interference
bandwidth to spread spectrum bandwidth is small, the interference can be filtered out to
enhance system performance. However, this is at the expense of introducing some dis-
tortion onto the signal. This process of filtering is sometimes referred to as interference
excision.

The Kalman filtering approach is based on the digital phase-locked loop Kalman
filter and is close to optimum for demodulating an FM-type of interferer. Because the
interference is assumed to be much stronger than either the signal or noise, the Kalman
filter locks onto the interference and produces an estimate of the phase and envelope of
the interference.

In the case of narrowband Gaussian noise, the envelope varies significantly. The
time-varying nature of the envelope leads first to an unknown group delay in the envelope
estimate if an IIR filter is used and, second, to sudden phase changes when the envelope
changes sign; for this latter situation, the Kalman filter loses temporary lock in its phase-
tracking and must re-acquire the interference. Both the group delay and phase-tracking
problems contribute to an excess amount of residual interference at the output of the
interference canceller, resulting in an overall degradation in performance. To combat
the unknown group delay caused by an IIR filter, a linear phase FIR filter with known
group delay is used in the envelope estimator. To combat the excess noise caused by

v



the sudden phase changes, additional phase smoothing is incorporatcd i tht- Kalman
filter. Through computer simulation, it is shown that both enhanceieimts curtribute to
an. overall improvement in performance of 4 to 5 dB for interference bantdwidths rangilNg

from 1% to 5% of the chip rate.
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1.0 INTRODUCTION

Several reports have been written by the author on the subject of interference suppres.sioni

of narrowband interference from direct sequence spread spectrum communications sigl ads

using a Kalman filtering technique [1, 2, 3]. The first two reports dealt with iuterfercrs

which were of the constant envelope type for which the Kalnan filtering technique prwv-ides

close to optimum performance. The last report evaluated the Kalman filter excisor for the

case of narrowband Gaussian noise-a more difficult type of interference because - b,,th the

envelope and phase vary with time. This technical note presents an improved excisur tv

deal with the more difficult narrowband Gaussian noise interference problem as discussed

in [3].
The outline of the technical note is as follows. Section 2.0 presents the comii-

munications model used in the simulations. Section 3.0 describes the basic interferctice

estimator which was used in the previous reports [1, 2, 31 and to which enhaticeruents will

be made to improve the performance for narrowband Gaussian interference. Section 1.0
presents the problem to be solved. These include two things: (a) the effects of group delay

caused by the low pass filter used to estimate the envelope; and, (b) the additional pha'se

noise caused by a loss of phase-lock in the Kalman filter when the envelope changes sign.

Enhancements to the system are presented and evaluated. Fiinally, Section 5.0 concluides

the technical note, suggesting areas for further research.

2.0 COMMUNICATIONS MODEL

The basic elements of the BPSK PN spread spectrum receiving system are shown inI

Fig. 1. The received waveform r(t), consisting of a spread spectrum signal, additive

white Gaussian noise, and narrowband interference is applied to a bandpass filter with

the transfer function Hbl,(f), whose output is defined as

u(t) = s(t) + n(t) + i(t). (1)

The bandpass filter Hb,(f), for the application considered here, is assumed to be a filter

matched to a chip and centered at the carrier angular frequency w0 of the spread spectrum

signal. The spread spectrum signal is defined as

s(t) = a(t) cos(wot) (2)
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Figure 1: Spread spectrum communications model.

where

a(t) = y Dkbk(t - kTb).

k

In Eq. (3), Dk is a sequence of data bits if amplitude (±1) and duration T6 seconds, and

bk(t - kTb) is the PN sequence pattern for the kth bit, i.e.,

L
bk(t) = Eckjq(t - jTt) 0)

j=i

with L being the number of pseudo, random chips per bit, or the processing gain. Ck, is

the code sequence for the bit, and q(t) represents the basic chip pulse of energy E,.

The noise n(t) is Gaussian and has a power spectral density

N0
S. (f) = -IHbp(f)1 2 , (5)

2

where No/2 is the power spectral density of the assumed white Gaussian noise from the

channel. The band of interference is defined as

i(t) = 1(t) cos(wot + O(t)) (6)

where I(t) is the interference amplitude and O(t) is the phase modulation. It has been

assumed that the effect of the bandpass filter Hbp(f) is negligible on the interference i(t).

Referring to Fig. 1, the output u(t) of the bandpass filter Hbp(f) is bandpass

sampled and applied to a limiter/bandpass filter and interference estimator.

Consider the bandpass sampler first. The analog signal u(t) from Eq, (1) is
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sampled at f, = 2R, (mnf, = Wo/27r + Rd/2 for some integer ii) where H, is the chip rate

of the spread spectrum signal- The resultant sampled signal is, therefore,

un = S,, + nn, + t (7

where s, consists of the sequence {...,0, (- l)"a, 0, (- l)"+a+,..} where the ,4,, ae,

of energy E, and coded according to ckDk for the Jt` chip in the k"' transinitted bit.

nn I are uncorrelated Gaussian noise samples of variance = E,(Xo/2), and z , is the

sampled version of Eq. (6). The samples un are applied to the interfere-nce esti:Uat.or and

interference canceller.

The interference estimaLor produces an estimate i,, of the intierference which is

removed from the sampled input un. The output of the summer is decimated and sign

reversed, resulting in a baseband error signal e,. This error signal is correlated with the'

PN sequence. The output of the correlator is integrated and bit-detected.

Consider now the branch containing the limiter. Here, u, is applied to a hill-

iter/bandpass filter. The input to the limiter referenced to the interference is redefied

as

U I + n' + a',] + [n' + a',nJ2CoSt' 0n + 0, o+

where
/n/2+ a,

Oun= arctan 2 'v +¢•,,. arct n I + n'1, /v/2_ + ai,n

is a noise-like phase fluctuation on the interferer's phase On, and is due to the noise and

spread spectrum signal. The terms n' ' and a, are in-phase and quadrature

components of the noise and spread spectrum signal with respect to the interference phase
On.

The output of the limiter/bandpass filter is [4]

bPn = 4A' cos[won + On + Okt ,,], (10)
7r

where A' is the limiter's output level. This signal is redefined as (letting A' = v/r/.l for

convenience)
bpn = i2/cos[won + On + (11 )

It should be noted that for large interference-to-noise ratios in which the interference is

'Coherent, bandpass sampling has been assumed, so that the in-phase component is

(nl,n/V/2) cos(nir/2) and the quadrature component is (n2,,/v'2)sin(nr/2)
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of constant envelope, , in Eq. (11) is approximately Gaussian [4]. The sample.d sigial

in Eq. (11) is what is processed by the Kalman filter, which estimates the ph;Lse 0", of ti6,

interference. The phase estimate is denoted as

3.0 INTERFERENCE ESTIMATOR

The interference estimator shown in Fig. I is detailed in Fig. 2. The Kalmanri algorithm

[3] produces a signal

ýn= v"2 cos("ýon + kjn 1) 1

which can be used as a basis for estimating a sampled version of the envelope of itt ) i.0-.

I,, in Eq. (6)). The output of the first multiplier is a baseband term and is, u1sing E". (7).
excluding the V'2 factor,

i'. = In cos(On -- k. 1_)

+ n cos(won + 0-1) + a, COS(D,,.)

+ a, cos(2won + ri,-1I) (i3I

Equation (13) consists of four terms: the first term is related to tiho desired cnv,'lope of

SFilter

un Low Pass 24T

S- [(BW"BLpP

Figure 2: Block diagram of the interference estimator.

the interference; the second is approximately Gaussian baseband noise [5]; and the third
and fourth terms are noise-like terms emanating from the spread spectrum signal. The
fourth term, because of the sampling rate conditions discussed in [6], is essentially filtered
out by the low pass filter of bandwidth BLPF < 0.50 Hz and, therefor,', will be ignored in

the baseband simulations to be discussed in the next section. The term i', /v'2 is filtered,
resulting in the estimate of the interference envelope, i,,/v'2. Combining this with ý,, in

Eq. (12) and shown in Fig. 2, yields the estimate of the interference

In = In Cos(Lwon + 0.,n_,)1 (14)
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which is subtracted from u. as illustrated in Fig. 1.

4.0 NARROWBAND GAUSSIAN NOISE INTERFERENCE

The interference that is conwsdered is narrowband Gaussian noise. 1I1 [1, 21, the envuhtp,

was constant. For narrowband Gaussian noise, the envelope varies as well as the phisvhe

There are two issues to be concerned with here that are related to the thie-varving

envelope. First, the low pass filter used in estimating the envelope I,, iII Fig. *2 will

introduce a lag in i, thereby increasing the amount of residual interference at thet output

of the canceller. Second, a time-varying envelope will have the impact of iMtroducin'g

larger phase errors, particularly when the envelope gets very small, since the Kalman

filter will not be able to track tle fast phase transitions during these Instances. These

effects will now be dealt with at length.

4.1 FILTER LAG EFFECTS

First consider the effect of the lag introduced by the Butterworth filter of bandw idt lt

BLPF in estimating 1, in Fig. 2. The effect can be observed if one graphs the degree-

of interference suppression at the output of the excisor as a function of d, the frequency

deviation constant of the Kalinan filter, for a particular interference bandwidth 13, for

several values of BLPF. Interference suppression is defined in [1] as

S = l0log(Ai2/P,) (15)

where At,• = t,, - i, is the residual interference, and P. is the power in the interference.

As an example, Fig. 3 illustrates the degree of interference suppression as a function of

d, when the interference bandwidth is B, = 0.02 Hz. The interference was generated by

applying white Gaussian noise to a fourth order lowpass Butterworth filter resulting in

the baseband interference i,, = I,, cos(O,,). Observe that as BLPF increases, the degree

of suppression improves. This phenomenon is due to the reduction in the lag as 83LPF

increases. It is more clearly illustrated in Figs. 4 and 6, in which sections of the envelope

4. and its estimate in have Leen plotted for BLPF = 0.20 and 0.40 Hiz for the case when

d = 0.30 rad./sec/volt which is approximately the minimum in Fig. 3. A comparison of

Fig. 6 with Fig. 4 reveals a reduction in the delay but, as to be expected, an increase

in envelope noise. The effect of the delay is further illustrated in Figs. 5 and 7 for the

overall interference i,, and i,, for the two cases. In Fig. 5, one can also see the effect of

the phase-noise, since the envelope noise for this case was small as indicated in Fig. 4.
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From these results, and the results of [1, 2) concerning constant envelope interfer-

ence, there are conflicting requirements. The results from the constant envelope analysis

suggested the use of as small a bandwidth for the lowpass filter as possible, whereas here,

as large a value as possible is required to reduce the lag, but at the expense. of introducing

more envelope noise and signal distortion. This suggests that one could compensate for

the delay or use a linear phase FIR filter with some predefinzd delay. Either of these

approaches will, of course, translate into the requirement for a similar delay in the PN

correlator. The remainder of this technical note will consider an FIR low pass filter with

pre-defined delay.

To accomodate this change, the interference esimator of Fig. 2 will have to be

modified somewhat to account for this type of filter. The modified version of Fig. 2 is

illustrated in Fig. 8. The FIR low pass filter has a delay D, which requires that ý,, in

Fig. 2 and Eq. 12 must be delayed by D as well to yield

n-D Vcos•(,o(n - D) + in-D] (16)

before combining it with the envelope estimate, ,n-O, to produce the interference estimate

n,-D. This requires too that the input signal u,, = s,, + n,, + in be delayed by D samples

before removal of the interference estimate. The output of the canceller is

e%_D = UtnD - I n-D

= Jn-D + nn-D + in-D - t,-D. (17)

This error signal is then applied to the PN correlator whose PN sequence is delayed by D

as well.

A comparison of the suppression performance of the systems in Figs. 2 and 8 is

now presented.

The bandwidth of the FIR and Butterworth filters for this case was BLPF = 0.20

Hz. The FIR filter had 7 taps with rectangular weighting, the interference bandwidth was

Bi = 0.02 Hz and Eb/No = 12 dB. The results are illustrated in Fig. 9 and indicate that

the FIR filter improves the amount of interference suppression by 2.7 dB. Furthermore, a

comparison of Fig. 3 with Fig. 9 shows that the FIR filter of bandwidth 0.20 Hz provides

an additional I dB of interference suppression over the Butterworth filter of bandwidth

0.40 Hz. This gives one some idea of the degradation in performance produced by the

additive envelope noise using the interference estimator in Fig. 2 for the larger bandwidth

situation.

Examples of the envelope and interference estimates are also illustrated in Figs. 10
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and 11. Notice in Fig. 11 between 200 and 300 seconds the additional noise due to phase-

noise. Finally, Fig. 12 shows the suppression level for several interference bandwidths,

with BLpF = 0.20 Hz and E6 /No = 12 dB. It is important to note here that as the band-
width of the interference increases, the value of d at which the mininuni occurs increases,

emphasizing the requirement for a larger Kalman filter bandwidth, which is controlled by

d (everything else being constant), to cope with the faster rate of change of the phase.

4.2 PHASE-NOISE EFFECTS

The second issue to consider is the tendency of the Kalnan filter to temporarily lose

track when the phase varies rapidly during those instances when the envelope becomes

small. It is conceivable, therefore, that with some additional phase-smoothing apart from

that provided by the Kalman filter, the phase estimates can improve, thereby reducing

envelope and phase-noise caused by inaccurate phase estimates.

To accomodate this idea, an additional modification must be made to the i'iter-

ference estimator in Fig. 8; this change is illustrated in Fig. 13. In this figure, the phase

estimate 0-, from the Kalman filter in Fig. 4 of [31 is applied to a simple N-point

smoother implemented as an FIR comb filter that introduces the same delay D as the

FIR filter used in filtering the envelope. The result is the smoothed phase 0,_- which is

applied to a phase modulator, yielding the signal

I-D = v cos[wo(n - D)+ +(1)

This signal is combined with the envelope estimate in-D to produce the interference

estimate

in-D = _n-D cos[wo(n - D) + 0 n-D] (19)

that is then subtracted from the delayed input Un-D to yield the error signal e.-D.

Figure 14 shows a section of the phase 0n and its Kalman filtered estimate Oi-,-I

for the case when the interference bandwidth is BA = 0.02 Hz and d = 0.30 rad./sec./volt
using the system in Fig. 8. This should be compared with Fig. 15, which is a 7-point

smoothed version of nln-.I. based on the system in Fig. 13; the effect of smoothing the

phase estimate is quite apparent. Figure 16 shows a magnified version of a segment of

interference in along with the estimates obtained with and without phase smoothing. Here

too, the improvement is quite noticeable.
The level of interference suppression as a function of d is illustrated in Fig. 17 for

several interference bandwidths. As can be seen, the degree of suppression has improved

by 3 to 4 dB in comparison with the results in Fig. 12 in which no phase-smoothing

7



was used. In addition, there is a broader range of values for d over which the maxuuilu

suppression level can be maintained.

The bit error rate performance of the two interference estimators in Figs. 8 and
13 is presented next as determined from computer simulation. The test conditions were

as follows. A total of 50,000 bits were transmitted with a processing gain of L = 20,

implying a total of 1,000,000 chips. The interference was narrowband Gaussian noise

ranging in bandwidth from Bi = 0.01 Hz to 0.05 Hz. The approximated optimum values
for d obtained from Figs. 12 and 17 were used in the Kalman filter. The term af was set

at 0.0003125 Hz and the spectral density of the observation noise N,,6 ./2 was obtained

from Eq. (23) of [1], with 12 replaced by T2, the mean-squared value of the envelope. The
bandwidth, BLPF, selected for the linear phase FIR filter was 0.20 Hz and introduced a
delay of D = 3 samples. The phase estimate , in Fig. 13 was applied to a 7-point

rectangular smoother, which also introduced a delay of D = 3 samples.

0

BLPF= 0.1 Hz
-2 .BpF0.2Hz ........

BL PF 0.3 Hz/4 ........ .BLPF .Hz
Lt

-8 .. .......... .. . .. . . .. . . .. .. . ..
-1 . . . . . . . . . . . . . . . . . . ..... ..... ..... ........ ..... ... ..... . ..... . ... /. . . .... .. .. . . ..... .. ... . ..I,

itt

- 14 . ............ ....... .. ..

- 16 . .. " ............... ......... ..........

- 1 8 .................. ........... ........... .................... ............. .. .......... .. .. . .................... .

-201

0 0.5 1 1.5 2

d (rad. /sec. /volt)

Figure 3: Level of interference suppression S as a function of d for several lowpass filter
bandwidths. The interference is narrowband Gaussian noise of bandwidth 0.02 Hz.
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The results of the two interference estimators are plotted in Figs. 18 and 19. The
bit error rate performance of the interference estimator with phase-smoothing (Fig. 19)
indicates a significant improvement in performance over its non-smoothed counterpart
shown in Fig. 18. In fact, the improvement is 4 to 5 dB in each of the cases when bit
error rates at E61No = 12 dB are compared. These results also indicate the role of the
phase-noise in so far as its effect on the bit error rate for narrowband Gaussian noise is
concerned. This was also exhibited in the amount of interference suppression betweeu
the two approaches (Figs. 12 and 17). There too the improvement in suppression was

approximately 4 dB.
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Figure 12: Interference sappression level S as a function of d for several interference
bandwidths, Bi, ranging from 0.01 Hz to 0.04 Hz, with BLPF = 0.20 lIz.
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Figure 14: An example of the phase 0, and its Kalnan filter estimate , with inlcr-
ference bandwidth B, = 0.02 Hz and d = 0.30 rad./sec./volt.
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Figure 17: Interference suppression level S as a function d for several interference band-
widths, B0, ranging from 0.01 Hz to 0.05 Hz, with BLPF = 0.20 Hz.
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5.0 CONCLUSIONS

This technical note has presented an improved Kalman filtering excisor to deal with the
more general type of interference-narrowband Gaussian noise, which would be represen-
tative of the case when, say, several independent, narrowband interferers are lumped close
together in some region of the frequency band also occupied by the direct sequence spread
spectrum signal. Under these conditions, both the envelope and phase of the composite
interference will vary, resulting in poorer performance of the basic Kalman filter excisor

described in earlier reports.
This technical note presented the essence of the problem in so far as the Kalman

filter is concerned when narrowband Gaussian interference is present. Two enhancements
were suggested and evaluated. It was shown that up to 5 dB of improvement could be
attained with the revised excisor.

It should be noted that only one value of low pass filter bandwidth BLPF (i.e.,

0.20 Hz) was selected for these comparisons, and only one type of phase-smoother. Other
combinations may produce superior performance; however, further work would have to
be conducted to assess if indeed this would be possible. Finally, given the significance
of the phase-noise at the output of the Kalman filter for narrowband Gaussian noise
interference, other architectures perhaps can be developed using the phase-smoothing
concept to further improve performance.
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